Abstract

IntroductionCardiac resynchronisation therapy (CRT) corrects electrical dyssynchrony. However, the temporal changes in the electrical timing according to substrate are unclear. We used electrocardiographic imaging (ECGi) for serial non-invasive assessment of the underlying electrical substrate and its response to resynchronisation. Material and methodsECGi activation maps were constructed 1 day and 6 months post CRT implant. ECGi maps were analysed offline to determine the total ventricular activation time (TVaT) and the time for the bulk of ventricular activation (10th to 90th percentile activation; VaT10–90 Index). Statistical analysis was performed using repeated measures ANOVA with post-hoc pairwise comparisons using paired t-tests. The % relative change within each time point was also calculated and compared between the two time points. ResultsEleven CRT patients were studied. Both total and bulk ventricular activation significantly decreased with CRT turned ON at day 1. Intrinsic (CRT OFF) TVaT and VaT10–90 Index at day 1 were 143 ± 23 and 84 ± 20 ms, respectively, and they significantly decreased post CRT to 115 ± 26 ms (P < 0.001) and 49 ± 17 ms (P < 0.05), respectively. The relative change at day 1 was also statistically significant for TVaT (19 ± 12%, P < 0.001) and VaT10–90 Index (39 ± 25%, P < 0.001).After 6 months, the relative decrease in TVaT with CRT ON remained stable (19% vs. 18% at day 1 and 6 months, respectively) whereas reduction the in VaT10–90 Index was decreased 39% vs. 26% at day 1 and 6 months, respectively. In non-ischaemic patients both total and bulk activation times reduced following CRT. Volumetric responders exhibited an electrical remodelling for bulk activation not apparent in Non-responders, after 6 months of CRT ON. ConclusionsIntrinsic bulk myocardium activation becomes more rapid and synchronous with CRT. The bulk activation time is more susceptible to improvement by CRT in ischaemic patients and volumetric responders. These observations are consistent with CRT causing reverse electrophysiological remodelling in the bulk myocardium, but not in late-activating ischaemic or fibrotic regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.