Abstract

Nonaggregated proteoglycan monomers, digested fragments of the monomers, as well as link proteins have been shown to self-associate. These associations have not been shown to occur on the aggregate. However, previous reports, using the Kleinschmidt technique of monolayer electron microscopy, have noted proteoglycan subunits on the aggregate that appear to interact, either as branched proteoglycans or as proteoglycan subunits that appear to share the same attachment site on the hyaluronic acid chain. Branching and shared attachments were noted in all aggregates analyzed in this study. Increasing the average space between proteoglycan subunits on the reconstituted aggregate resulted in a significant decrease in branched proteoglycans, indicating either a weak association occurring on the aggregate, or an artifact created by a three-dimensional structure being reduced to a two-dimensional monolayer image. The shared attachments were independent of both the presence of link proteins and changes in spacing between proteoglycans, suggesting a proteoglycan-proteoglycan interaction occurring before aggregation. The interactions were not influenced by proteoglycan concentration at the time of aggregation. Link proteins, however, did increase the number of proteoglycans on the aggregate that could be cross-linked with a bifunctional reagent, suggesting that link proteins facilitate proteoglycan-proteoglycan interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call