Abstract

The Vestfold Hills sector on the coastal fringe of the Princess Elizabeth Land forms part of an Archean to Paleoproterozoic aged cratonic nucleus of the East Antarctic Shield. A charnockite-granite association from the Mossel Gneiss Group in the northern region of the Vestfold Hills is investigated in this work to characterise the metamorphic-magmatic evolution of the area. Conventional thermometry and phase equilibria modelling indicate that the charnockite formed as a result of ultra-high temperature metamorphism at low-intermediate pressure (∼4 kbar). Phase equilibria modelling, reveals that the melt-integrated charnockite composition is a restitic product of a protolith of quartz diorite composition which underwent isobaric heating (peak temperature up to 960 °C) at 4 kbar pressure followed by anatexis. The anatexis of the quartz diorite protolith also resulted in the formation of the associated granitic melt. U–Th-PbTotal ages obtained from monazites of the granite integrated with CHIME ages extracted using the isochron method indicate an emplacement age of ∼2200 Ma and two younger events are recorded at ∼2000 Ma and ∼1700 Ma. The younger ages are ascribed to the resetting during the emplacement of younger basalt dykes that cross cut the charnockite-granite sequence. Vestfold Hills’ geological correlations with Indian and Australian cratons are discussed considering this new data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call