Abstract

The protein hormone insulin exists in several forms in nature, and a large number of modified sequences are used in pharmacy. They differ by physicochemical properties and efficiency of biological action. Pancreatic bovine insulin was studied in an acidic solution by nuclear magnetic resonance spectroscopy. [Formula: see text]H and [Formula: see text]C NMR signal assignment of backbone and side chains was made by analysis of a set of 2D spectra obtained on a sample with natural isotope abundance. The presence of certain secondary structure elements was revealed on a qualitative level based on nuclear Overhauser effect spectroscopy, which are similar to those observed in the crystal structure. The C-terminus of the B-chain possessed a remarkable flexibility. The molecule was shown to exist in exchange with oligomers based on its self-diffusion coefficient and correlation time measurements performed at different concentrations. Certain signals in the NOESY and HSQC spectra are consistent with the presence of minor conformers; this is an obstacle in simulating the molecular structure under the conditions used in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.