Abstract

Identifying the symmetry of the wave function describing the Cooper pairs is pivotal in understanding the origin of high-temperature superconductivity in iron-based superconductors. Despite nearly a decade of intense investigation, the answer to this question remains elusive. Here we use the muon spin rotation/relaxation (muSR) technique to investigate the underlying symmetry of the pairing state of the FeSe superconductor, the basic building block of all iron-chalcogenide superconductors. Contrary to earlier muSR studies on powders and crystals, we show that while the superconducting gap is most probably anisotropic but nodeless along the crystallographic c-axis, it is nodal in the ab-plane, as indicated by the linear increase of the superfluid density at low temperature. We further show that the superconducting properties of FeSe display a less pronounced anisotropy than expected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call