Abstract

Previous studies have shown that inhibition of nidogen-laminin binding interferes with basement membrane stabilization in various mouse organ cultures while no overt phenotype has been observed following inactivation of the nidogen-1 gene in mice. We have now used recombinant mouse nidogen-1 and nidogen-2 in order to evaluate a possible compensation between the two isoforms in the knock-out mice. Essentially, a comparable in vitro binding of nidogens-1 and -2 to the same laminin gamma1 chain structure and to several other basement membrane proteins has been revealed. Quantitative radioimmuno-assays have demonstrated high concentrations of nidogen-1 exceeding those of laminin gamma1 and nidogen-2 by factors of 5 and 20-50, respectively, in tissue extracts of wild-type mice. A three- to sevenfold increase in nidogen-2 was observed in heart and muscle of mice with nidogen-1 deficiency and confirmed by a similar increase in the intensity of immunogold staining of these tissues. However, a few of the tissues from mice with the gene knock-out still contained some nidogen-1-like immunoreactivity (1% of wild-type). Furthermore, both nidogen isoforms showed a similar distribution in various organs during embryonic development which, however, as shown previously, changed in some adult tissues. The data support the nidogen-2 compensation hypothesis to explain the limited phenotype observed following elimination of the nidogen-1 gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.