Abstract

Three isolates of Haemonchus contortus selected for avermectin resistance in sheep were compared in three in vitro pharmacological tests previously shown to discriminate between field isolates of H. contortus resistant and susceptible to the avermectins. Two isolates, F7-A and IVC, were selected for avermectin resistance in the laboratory from a reference susceptible isolate using suboptimal doses of ivermectin (LD 95) for 7 and 16 generations, respectively. In these isolates avermectin resistance was not associated with a decreased sensitivity to avermectin inhibition of larval development or L3 motility but was associated with an increased sensitivity to paraherquamide. The third isolate, Warren, was derived from an overwhelmingly avermectin-susceptible, mixed species field isolate in a single generation by propagating the small number of survivors of a 0.2 mg/kg ivermectin treatment (i.e. 10×LD 95). This isolate, like previously characterised avermectin-resistant H. contortus isolates derived from the field in South Africa and Australia, showed a markedly reduced sensitivity to avermectin inhibition of larval development and L3 motility, as well as an increased sensitivity to paraherquamide. These results suggest that avermectin resistance can manifest itself in different ways and that the two selection protocols used to generate the F7-A, IVC and Warren isolates have resulted in the selection of different resistance phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.