Abstract

Metadynamics simulations driven by using two X-ray diffraction peaks identified three alternative crystallization pathways of the lithium disilicate crystal from the melt. The most favorable one passes through the formation of disordered layered structures undergoing internal ordering in a second step. The second pathway involves the formation of phase-separated structures composed of nuclei of β-cristobalite crystals surrounded by lithium-rich phases in which metasilicate chains are formed. The conversion of these structures to the stable lithium disilicate crystal involves an intermediate structure whose silicate layers are connected by silicate rings with the energy barrier of 2.5 kJ/mol per formula unit (f.u.). The third pathway is highly unlikely because of the huge energy barrier involved (20 kJ/mol per f.u.). This path also involves the passage through a phase-separated structure of an indefinite silica region surrounded mainly by amorphous lithium oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.