Abstract

The effects of the oligothiophene length of two thiophene-isoindigo copolymers on film morphology, charge transfer, and photovoltaic device performance are reported. Despite the similarities in their repeat unit structures, the two polymers show distinctly different film morphologies and photovoltaic performance upon blending with PC71BM. We found that there is a significant increase in the dielectric constant of the photoactive film upon blending fullerene with the polymer that exhibits a higher power conversion efficiency. Blend photoluminescence transients revealed a fast dissociation route in the better performing polymer followed by a slower decay. The fast decay in transient PL is attributed to a higher charge transfer efficiency when blending with the fullerene. We suggest that the charge transfer efficiency is determined not only by the microscopic morphology but also whether the polymer can accommodate the fullerene molecules in close proximity to the acceptor moiety to facilitate electronic coup...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.