Abstract

Simple models involving the gradual outboard accretion of material along curvilinear subduction zones are often inconsistent with field-based evidence. A recent study using 3-D geodynamic modelling has shown that the entrainment of an exotic continental fragment within a simple subduction system can result in a complex phase of growth. Although kinematic models based on structural mapping and high-resolution gravity and magnetic maps indicate that the pre-Carboniferous Tasmanides in southeastern Australia may have been subjected to this process, to date there has been little corroboration from crustal scale geophysical imaging. Here, we apply Bayesian transdimensional tomography to ambient noise data recorded by the WOMBAT transportable seismic array to constrain a detailed (20 km resolution in some areas) 3-D shear velocity model of the crust beneath southeast Australia. We find that many of the velocity variations that emerge from our inversion support the recently developed geodynamic and kinematic models. In particular, the full thickness of the exotic continental block, responsible for orocline formation and the tectonic escape of the back arc region, is imaged here for the first time. Our seismic results provide the first direct evidence that exotic continental fragments may profoundly affect the development of an accretionary orogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.