Abstract

Understanding compositional and microstructural changes in functional intermetallic coatings is of great importance for fusion energy and nuclear materials applications. Tritium ( 3 H) and lithium ( 6 Li, 7 Li) transport within a neutron irradiated target rod employing an aluminide-coated austenitic stainless-steel cladding was investigated using state-of-the-art multimodal imaging. Specifically, a scanning electron microscope augmented with focused ion beam (SEM-FIB) was used to prepare lift-out samples of the irradiated coating for microanalysis. Scanning transmission electron microscopy (STEM) was used to acquire atomic-scale information on the coating surface microstructure, morphology, and composition. Atomic force microscopy (AFM) was used to determine lift-out dimensions nondestructively. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the presence of carbonaceous species and unexpected lithium isotopic distributions in the irradiated tubing, suggesting light isotope mobility between internal target components during irradiation. SIMS chemical mapping of aluminide coatings at core midplane and lower core locations of the cladding shows that light isotopic (e.g., 3 H, 6 Li, 7 Li) distributions are different in the irradiated coating. Advance correlative imaging results suggest lithium transport during the tritium production process and give new insights into the fundamental transport mechanism within the target during irradiation and non-equilibrium conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.