Abstract
The wave–particle interaction processes occurring in the solar wind provide crucial information to understand the wave dissipation and simultaneous particle heating in plasma turbulence. One requires observations of both wave fluctuations and particle kinetics near the dissipation range, which have, however, not yet been analyzed simultaneously. Here we show new evidence of wave–particle interactions by combining the diagnosis of wave modes with the analysis of particle kinetics on the basis of measurements from the WIND spacecraft with a high cadence of about 3 s. Solar wind protons appear to be highly dynamic in their velocity distribution consisting of varying anisotropic core and beam components. The basic scenario of solar wind proton heating through wave–particle interaction is suggested to be the following. Left-handed cyclotron resonance occurs continuously, and is evident from the observed proton core velocity distribution and the concurrent quasi-parallel left-handed Alfven cyclotron waves. Landau and right-handed cyclotron resonances are persistent and indicated by the observed drifting anisotropic beam and the simultaneous quasi-perpendicular right-handed kinetic Alfven waves in a general sense. The persistence of non-gyrotropic proton distributions may cast new light on the nature of the interaction between particles and waves near and beyond the proton gyro-frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.