Abstract
Thiotropolone isolated in argon and xenon matrices (as monomers) or in a neat solid (as the crystalline or amorphous state) at low temperature was found to exist only in the thione-enol form. Visible light irradiation (λ ≥ 400 nm) leads to thione-enol → thiol-keto tautomerization in matrices and under neat solid conditions at 15 K. The assignment of the IR spectra of the two thiotropolone tautomers (thione-enol and thiol-keto) was carried out with the support of B3LYP/6-311+G(2d,p) computations. The thiol-keto form generated in situ in a neat solid was found to tautomerize back to the thione-enol upon annealing up to 100 K. Gaussian-4 (G4) computations estimate that such a tautomerization process has an energy barrier of ∼25 kJ mol-1, which is consistent with the observations. Moreover, it was found that narrowband IR irradiation of the thiol-keto form in a neat solid, at the frequency of its CH stretching overtones/combination modes, also induces tautomerization to the thione-enol form. Such a result constitutes an important demonstration of vibrationally induced chemistry under neat solid conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.