Abstract

This paper discusses the conduction mechanism of silicon nitride. n-channel transistors and MOS capacitors with the top-oxide/ nitride/bottom-oxide dielectric structure were used to characterize the dielectric conduction. Top and bottom oxides were found to have different effects on the dielectric leakage current and electron and hole tunneling. This implies that the dominant charge carriers across the top and bottom oxides are different. We claim the conduction through a bottom oxide is dominated by electron flow and conduction through a top oxide and the nitride is dominated by hole flow for positive gate voltage. Energy band diagrams are presented to discuss the effective trap level for hole conduction in the nitride and holes and electrons tunneling through the oxide/nitride/oxide dielectrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.