Abstract

White-light supercontinuum generation can be readily observed when gold nanostructures are irradiated with short pulses of light. It is believed that the nanostructures enhance the optical fields, which facilitates the supercontinuum white-light generation from the surrounding environment or the substrate. Here, we investigate the different nonlinear processes that contribute to the generation of the supercontinuum from plasmonic nanostructures themselves using a technique that isolates the different nonlinear contributions. By exciting a gold nanofilm with a pair of frequency shifted optical frequency combs, we demonstrate multiple modulation frequencies in the supercontinuum. Their dependence on the excitation intensity reveals that the supercontinuum originates from different orders of nonlinear light–matter interactions. This contrasts with the supercontinuum generation by a cascaded third-order optical nonlinear response in traditional dielectric-based white-light sources. The while-light emission fr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.