Abstract

ABSTRACTSynthesis and understanding of metal oxide nanomaterials with improved electrochemical properties can play a big role in the development of high capacity electrochemical cells for application in lithium-ion batteries (LIBs). Metal oxide nanostructured materials have shown exceptional storage capabilities through conversion reaction. But, excess reversible capacity is usually observed in these systems. To understand the origin of the excess capacity, we have prepared nanostructured ruthenium oxide (RuO2) directly on stainless steel current collectors using low pressure chemical vapor deposition. The crystal structure of the as-prepared materials were examined by powder X-ray diffraction and indexed to the rutile structure. Field emission scanning electron microscopy revealed 3D pyramidal shape architectures that self-assembled into columns creating high surface area. Galvanostatic charge-discharge measurements were performed versus Li/Li+ in the range of 4.0 to 0.1 V. We have observed a reversible capacity of 1150 mAh/g which is equivalent to 5.70 Li per mol of RuO2. The expected capacity of RuO2 is 806 mAh/g which is approximately 4 Li per mol of RuO2 based on this equation: RuO2 + Li + 4e- ↔ Ru0 + 2Li2O. The excess capacity is approximately 435 mAh/g. The origin of the excess capacity was investigated using cyclic voltammetry, which was performed at two different range of voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call