Abstract

Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Pb analyses of zircons from Paleoarchean (~3.4 Ga) tonalite-gneiss called the Older Metamorphic Tonalitic Gneiss (OMTG) from the Champua area of the Singhbhum Craton, India, reveal 4.24-4.03 Ga xenocrystic zircons, suggesting that the OMTG records the hitherto unknown oldest precursor of Hadean age reported in India. Hf isotopic analyses of the Hadean xenocrysts yield unradiogenic 176Hf/177Hfinitial compositions (0.27995 ± 0.0009 to 0.28001 ± 0.0007; ɛHf[t] = −2.5 to −5.2) indicating that an enriched reservoir existed during Hadean eon in the Singhbhum cratonic mantle. Time integrated ɛHf[t] compositional array of the Hadean xenocrysts indicates a mafic protolith with 176Lu/177Hf ratio of ∼0.019 that was reworked during ∼4.2-4.0 Ga. This also suggests that separation of such an enriched reservoir from chondritic mantle took place at 4.5 ± 0.19 Ga. However, more radiogenic yet subchondritic compositions of ∼3.67 Ga (average 176Hf/177Hfinitial 0.28024 ± 0.00007) and ~3.4 Ga zircons (average 176Hf/177Hfinitial = 0.28053 ± 0.00003) from the same OMTG samples and two other Paleoarchean TTGs dated at ~3.4 Ga and ~3.3 Ga (average 176Hf/177Hfinitial is 0.28057 ± 0.00008 and 0.28060 ± 0.00003), respectively, corroborate that the enriched Hadean reservoir subsequently underwent mixing with mantle-derived juvenile magma during the Eo-Paleoarchean.

Highlights

  • Ga) tonalite-gneiss called the Older Metamorphic Tonalitic Gneiss (OMTG) from the Champua area of the Singhbhum Craton, India, reveal 4.24-4.03 Ga xenocrystic zircons, suggesting that the OMTG records the hitherto unknown oldest precursor of Hadean age reported in India

  • The Paleoarchean (~3.4 Ga) Tonalite-Trondhjemite-Granodiorite gneisses (TTG), called the Older Metamorphic Tonalitic Gneiss (OMTG), of the Paleo-Mesoarchean Singhbhum Craton of Eastern India and confirm that the OMTG holds the hitherto oldest precursor rock recorded in India

  • According to Hofmann and Mazumder[28], the OMTG represents a suite of TTGs that formed over an extended period between 3.53-3.45 Ga, whereas the Older Metamorphic Group (OMG) represents a supracrustal assemblage that formed as a greenstone succession

Read more

Summary

Introduction

Ga) tonalite-gneiss called the Older Metamorphic Tonalitic Gneiss (OMTG) from the Champua area of the Singhbhum Craton, India, reveal 4.24-4.03 Ga xenocrystic zircons, suggesting that the OMTG records the hitherto unknown oldest precursor of Hadean age reported in India. The Paleoarchean (~3.4 Ga) Tonalite-Trondhjemite-Granodiorite gneisses (TTG), called the Older Metamorphic Tonalitic Gneiss (OMTG), of the Paleo-Mesoarchean Singhbhum Craton of Eastern India and confirm that the OMTG holds the hitherto oldest precursor rock recorded in India. The oldest age obtained from the OMTG is a whole-rock Sm-Nd isochron age of 3775 ± 89 Ma34 This age was later questioned and subsequently amended by Moorbath et al.[35] to be closer to 3.4 Ga. other older ages recently reported from the OMTG include an age of 3664 ± 79 Ma, which was derived from a whole-rock Pb-Pb isochron[36], and a xenocrystic zircon core age of ~3.61 Ga (207Pb/206Pb in situ LA-ICP MS dating), which was found within a ~3.4 Ga zircon[37]. The ∼3.6 Ga xenocrysts from the OMTG37 and OMG quartzites[30] indicate that felsic crustal formation was initiated in the Singhbhum Craton well before the major phase of emplacement of the OMTG

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call