Abstract

Abstract. There has been a steady increase in interest in mining of deep-sea minerals in the Clarion–Clipperton Zone (CCZ) in the eastern Pacific Ocean during the last decade. This region is known to be one of the most eddy-rich regions in the world ocean. Typically, mesoscale eddies are generated by intense wind bursts channeled through gaps in the Sierra Madre mountains in Central America. Here, we use a combination of satellite and in situ observations to evaluate the relationship between deep-sea current variability in the region of potential future mining and eddy kinetic energy (EKE) in the vicinity of gap winds. A geometry-based eddy detection algorithm has been applied to altimetry sea surface height data for a period of 24 years, from 1993 to 2016, in order to analyze the main characteristic parameters and the spatiotemporal variability of mesoscale eddies in the northeast tropical Pacific Ocean (NETP). Significant differences between the characteristics of eddies with different polarity (cyclonic vs. anticyclonic) were found. For eddies with lifetimes longer than 1 d, cyclonic polarity is more common than anticyclonic rotation. However, anticyclonic eddies are larger in size, show stronger vorticity, and survive longer in the ocean than cyclonic eddies (often 90 d or more). Besides the polarity of eddies, the location of eddy formation should be taken into consideration when investigating the impacted deep-ocean region as we found eddies originating from the Tehuantepec (TT) gap winds lasting longer in the ocean and traveling farther distances in a different direction compared to eddies produced by the Papagayo (PP) gap winds. Long-lived anticyclonic eddies generated by the TT gap winds are observed to travel distances up to 4500 km offshore, i.e., as far as west of 110∘ W. EKE anomalies observed in the surface of the central ocean at distances of ca. 2500 km from the coast correlate with the seasonal variability of EKE in the region of the TT gap winds with a time lag of 5–6 months. A significant seasonal variability of deep-ocean current velocities at water depths of 4100 m was observed in multiple-year time series data, likely reflecting the energy transfer of the surface EKE generated by the gap winds to the deep ocean. Furthermore, the influence of mesoscale eddies on deep-ocean currents is examined by analyzing the deep-ocean current measurements when an anticyclonic eddy crosses the study region. Our findings suggest that despite the significant modulation of dominant current directions driven by the bottom-reaching eddy, the current magnitude intensification was not strong enough to trigger local sediment resuspension in this region. A better insight into the annual variability of ocean surface mesoscale activity in the CCZ and its effects on deep-ocean current variability can be of great help to mitigate the impact of future potential deep-sea mining activities on the benthic ecosystem. On an interannual scale, a significant relationship between cyclonic eddy characteristics and El Niño–Southern Oscillation (ENSO) was found, whereas a weaker correlation was detected for anticyclonic eddies.

Highlights

  • IntroductionThe Clarion–Clipperton Zone (CCZ) holds the world’s largest known contiguous resource of polymetallic (manganese) nodules on its deep-ocean floor (von Stackelberg and Beiersdorf, 2003)

  • The Clarion–Clipperton Zone (CCZ) holds the world’s largest known contiguous resource of polymetallic nodules on its deep-ocean floor

  • In addition to the region of the North Equatorial Countercurrent, where the eddy kinetic energy (EKE) permanently shows values higher than 500 cm2 s−2, a greatly elevated EKE signal is located in the region of the gap winds off the coast of Mexico, albeit with a strong seasonal variability

Read more

Summary

Introduction

The Clarion–Clipperton Zone (CCZ) holds the world’s largest known contiguous resource of polymetallic (manganese) nodules on its deep-ocean floor (von Stackelberg and Beiersdorf, 2003). Potential future deep-sea mining (DSM) activities will inevitably produce a plume of suspended sediment above the seafloor. Current variability at the seafloor has been shown to be closely related to the passage of mesoscale eddies in the CCZ (Aleynik et al, 2017). These authors postulate that mining-related sediment plumes could spread more widely and rapidly during eddy-induced elevated bottom-water current flow periods. Understanding the long-term characteristics of eddies in the CCZ and their effects on abyssal current variability and plume behavior can be pivotal for developing mitigation measures to minimize the spatial scale of mining impacts on the seafloor

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call