Abstract
AbstractInfluenced by climate change, numerous lakes in permafrost regions are draining, showing significant spatial variability. This study focuses on St. Lawrence Island, where over the last two decades, 771 of 3,271 lakes have drained—a rate around 40 times higher than across the entire northern permafrost region. The surge in lake drainage began in 2018, coinciding with record low sea ice extent in the Bering Sea and unprecedented bird mortalities. Using satellite imagery and machine learning methods, we analyzed drainage events to identify the climatic drivers and potential climate thresholds affecting the island's lake ecosystems. Our findings indicate that autumn peak temperatures above 6°C more than triple the drainage probability, and warming‐induced permafrost thawing may be the direct driver of lake drainage. This research highlights the vulnerability of Arctic lake ecosystems to climate change and assists in developing predictive models for permafrost response, crucial for mitigating impacts on Arctic communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.