Abstract
This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a single exponential law with a lifetime of tens of nanoseconds. CML measurements under laser at 633nm evidenced the lack of correlation of the emission here reported with that of the Ge- or Si- non bridging oxygen hole centers. Moreover, our EPR experiments highlighted the lack of correlation between the red emitting defect with other radiation induced paramagnetic centers such as the E′Ge and Ge(2). The relation of the investigated emission with the H(II) defects, previously considered as responsible for a red emission, can not be totally excluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.