Abstract

The NW-SE-trending dextral strike-slip faults on the north side of the Tian Shan, e.g., the Karatau fault, Talas–Fergana fault, Dzhalair–Naiman fault, Aktas fault, Dzhungarian fault, and Chingiz fault, play an important role in accommodating crustal shortening. The classic viewpoint is that these strike-slip faults are an adjustment product caused by the difference in the crustal shortening from west to east. Another viewpoint attributes the dextral strike-slip fault to large-scale sinistral shearing. The Alakol Lake fault is a typical dextral strike-slip fault in the north Tian Shan that has not been reported. It is situated along the northern margin of the Dzhungarian gate, stretching for roughly 150 km from Lake Ebinur to Lake Alakol. Our team utilized aerial photographs, satellite stereoimagery, and field observations to map the spatial distribution of the Alakol Lake fault. Our findings provided evidence supporting the assertion that the fault is a dextral strike-slip fault. In reference to its spatial distribution, the Lake Alakol is situated in a pull-apart basin that lies between two major dextral strike-slip fault faults: the Chingiz and Dzhungarian faults. The Alakol Lake fault serves as a connecting structure for these two faults, resulting in the formation of a mega NW-SE dextral strike-slip fault zone. According to our analysis of the dating samples taken from the alluvial fan, as well as our measurement of the displacement of the riser and gully, it appears that the Alakol Lake fault has a dextral strike-slip rate of 0.8–1.2 mm/a (closer to 1.2 mm/a). The strike-slip rate of the Alakol Lake fault is comparatively higher than that of the Chingiz fault in the northern region (~0.7 mm/a) but slower than that of the Dzhungarian fault in the southern region (3.2–5 mm/a). The Chingiz–Alakol–Dzhungarian fault zone shows a gradual decrease in deformation towards the interior of the Kazakhstan platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.