Abstract

An electrochemical-based sensor created for creatinine detection has been developed for early point-of-care (POC) of diagnosis of renal illnesses. Useful information for the preventive diagnosis and clinical treatments of congenital disorders of creatinine mechanism, advanced liver and kidney diseases, and renal dysfunction can be obtained by the noninvasive evaluation of the creatinine levels in urine. The direct detection of creatinine can be achieved using the modified nanocomposite of cuprous nanoparticles encapsulated by polyacrylic acid (PAA) gel-Cu(II) fabricating on a screen-printed carbon electrode. Here, we report that the degree of kidney dysfunction failure can be determined by an amount of Cu(I) bound with the creatinine through the adsorptive mechanism on the modified electrode. Under cyclic voltammetry scans, the amount of creatinine was measured from the adsorptive signals of the redox peak current identifying the Cu(I)-creatinine complex with a natural logarithm of the creatinine concentration ranging from 200 μM to 100 mM. For this detection range, the theoretical calculation was postulated to describe experimental behaviors of the adsorptive mechanism as creatinine diffused to adsorb on the composite-modified electrode to reduce oxidized copper nanoparticles and transformed to Cu(II)-creatinine complexes. Interestingly, there was evidence that anodic peak potentials had been reduced in magnitudes and shifted negatively by natural logarithm during the formation of the Cu(I)-creatinine complex. For practical usage in POC technology, the creatinine detection in interference was carried out using differential pulse voltammetry to solely determine faradaic currents of creatinine-copper formation. With the interference of urea, glucose, ascorbic acid, glycine, and uric acid in artificial urine, the sensor showed promising results of the interference-free determination with 99.4% sensitivity efficiency, whereas for human urine interference, this sensor showed 85% sensitivity efficiency in detecting creatinine. This shows that this composite-modified sensor (PAA gel-Cu(II)/Cu2O NPs) has great potential for use in the next-generation devices for creatinine sensing to determine the progression in kidney dysfunctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call