Abstract

Observation of excitonic quantum beats in photosynthetic antennae has prompted wide debate regarding the function of excitonic coherence in pigment-protein complexes. Much of this work focuses on the interactions of excitons with the femto-to-picosecond dynamical fluctuations of their environment. However, in experiments these effects can be masked by static disorder of the excited-state energies across ensembles, whose microscopic origins are challenging to predict. Here the excited-state properties of ∼2000 atom clusters of the Fenna-Matthews-Olson complex are simulated using a unique combination of linear-scaling density functional theory and constrained geometric dynamics. While slow, large amplitude protein motion leads to large variations in the Qy transitions of two pigments, we identify pigment-protein correlations that greatly reduce variations in the energy gap across the ensemble, which is consistent with experimental observations of suppressed inhomogeneous dephasing of quantum beats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call