Abstract

We report the experimental evidence of a new form of room-temperature ferromagnetism in high surface area nanocrystalline manganese-doped In2O3, prepared from colloidal nanocrystals as building blocks. The nanocrystal structure (bixbyite or corundum) and assembly were controlled by their size, and the type and concentration of dopant precursors. The existence of substitutional paramagnetic Mn dopant ions in mixed valence states (Mn(2+) and Mn(3+)) was confirmed and quantified by different spectroscopic methods, including X-ray absorption and magnetic circular dichroism. The presence of different oxidation states is the basis of ferromagnetism induced by Stoner splitting of the local density of states associated with extended structural defects, due to charge transfer from the Mn dopants. The extent of this charge transfer can be controlled by the relationship between the electronic structures of the nanocrystal host lattice and dopant ions, rendering a higher magnetic moment in bixbyite relative to corundum Mn-doped In2O3. Charge-transfer ferromagnetism assumes no essential role of dopant as a carrier of the magnetic moment, which was directly confirmed by X-ray magnetic circular dichroism, as an element-specific probe of the origin of ferromagnetism. At doping concentrations approaching the percolation limit, charge-transfer ferromagnetism can switch to a double exchange mechanism, given the mixed oxidation states of Mn dopants. The results of this work enable the investigations of the new mechanisms of magnetic ordering in solid state and contribute to the design of new unconventional magnetic and multifunctional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call