Abstract

The behaviour of wood polymers during heat treatment carried out under inert atmosphere at 240 °C has been reinvestigated to understand the important decrease of the O/C ratio observed in a previous study using X-ray photoelectron spectroscopy (XPS). Heat treatment was performed not only on beech sawdust but also on its lignin and holocellulose fractions obtained after acidic hydrolysis of polysaccharides or delignification with sodium chlorite. CP/MAS 13C NMR spectra indicate as previously reported an important degradation of hemicelluloses after thermal treatment. However, assignments of the signals appearing in the range of 125–135 ppm and 35 ppm attributed up to now to thermal crosslinking of lignin and formation of methylene bridges should be reconsidered. Indeed, heat treatment of the holocellulose fraction indicates quite similar signals showing that these latter are not due to lignin modification. According to the literature, these new signals have been attributed to the beginning of char formation. Determination of Klason lignin and HPLC analysis of the sugars contained in the hydrolysate support the hypothesis of formation of carbonaceous materials within the wood structure during heat treatment by mild pyrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call