Abstract
This Letter reports the first fully consistent experimental observations of current-driven ionization waves conforming to the magnetohydrodynamic Rankine-Hugoniot model for hydromagnetic shocks. Detailed measurements of the thermodynamic and electrodynamic plasma state variables across the ionization region confirm the existence of two types of waves, corresponding to the upper and lower solution branches of the Hugoniot curve. These waves are generated by pulsed currents in a coaxial gas-fed plasma accelerator. The coupling between the state variables of this complex, transient, three-dimensional system shows a remarkable quantitative agreement of less than 8% deviation from the quasisteady, one-dimensional theoretical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.