Abstract
BackgroundDivergence of transcription factor binding sites is considered to be an important source of regulatory evolution. The associations between transcription factor binding sites and phenotypic diversity have been investigated in many model organisms. However, the understanding of other factors that contribute to it is still limited. Recent studies have elucidated the effect of chromatin structure on molecular evolution of genomic DNA. Though the profound impact of nucleosome positions on gene regulation has been reported, their influence on transcriptional evolution is still less explored. With the availability of genome-wide nucleosome map in yeast species, it is thus desirable to investigate their impact on transcription factor binding site evolution. Here, we present a comprehensive analysis of the role of nucleosome positioning in the evolution of transcription factor binding sites.ResultsWe compared the transcription factor binding site frequency in nucleosome occupied regions and nucleosome depleted regions in promoters of old (orthologs among Saccharomycetaceae) and young (Saccharomyces specific) genes; and in duplicate gene pairs. We demonstrated that nucleosome occupied regions accommodate greater binding site variations than nucleosome depleted regions in young genes and in duplicate genes. This finding was confirmed by measuring the difference in evolutionary rates of binding sites in sensu stricto yeasts at nucleosome occupied regions and nucleosome depleted regions. The binding sites at nucleosome occupied regions exhibited a consistently higher evolution rate than those at nucleosome depleted regions, corroborating the difference in the selection constraints at the two regions. Finally, through site-directed mutagenesis experiment, we found that binding site gain or loss events at nucleosome depleted regions may cause more expression differences than those in nucleosome occupied regions.ConclusionsOur study indicates the existence of different selection constraint on binding sites at nucleosome occupied regions than at the nucleosome depleted regions. We found that the binding sites have a different rate of evolution at nucleosome occupied and depleted regions. Finally, using transcription factor binding site-directed mutagenesis experiment, we confirmed the difference in the impact of binding site changes on expression at these regions. Thus, our work demonstrates the importance of composite analysis of chromatin and transcriptional evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: BMC Evolutionary Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.