Abstract

We investigated the effects of 30-min heat shock on survival, DNA degradation, and nuclear morphology of primary rat cortical and hippocampal neurones. In cell cultures which were grown for 8 days in vitro (DIV), only a small portion of neurones showed apoptotic morphology after heat shock of 45°C and typical DNA laddering was not detectable, despite the fact that nearly 50% of the neurones died within 24 h. The majority of the neurones presumably died by necrosis, as indicated by random DNA degradation. In neuronal cultures grown for 15 DIV, heat shock, however, resulted in DNA laddering, occurrence of apoptotic bodies and DNA strand breaks, typical of apoptosis. In these cultures, about 50% of the neurones showed apoptotic morphology following exposure to 45°C in TUNEL and acridine orange staining, whereas glia were not affected in vitality. In addition we were interested whether the highly inducible member of the heat-shock protein family, HSP72, would be induced in apoptotic cells. Double staining for HSP72 and TUNEL revealed concomitant HSP72 induction and occurrence of DNA degradation only in very few neurones in 15-DIV cultures, which were growing adjacent to astrocytes. A clear association of the degenerative process and HSP72 expression, therefore, could not be established. These results demonstrate that environmental stress, such as heat shock, can induce apoptotic death in aged primary cultured neurones. The differentiation state and/or the presence of glial cell elements in the cultures appears to be an important factor for the occurrence of apoptotic features in cultured neurones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call