Abstract

Shellfish waste components contain significant levels of high quality protein and are therefore a potential source for biofunctional high-value peptides. The feasibility of applying a pilot scale enzymatic hydrolysis process to whole Mytilus edulis and, by fractionation, recover hydrolysates presenting a biological activity of interest, was evaluated. Fractions were tested on four immortalized cancerous cell lines: A549, BT549, HCT15 and PC3. The 50 kDa fraction, enriched in peptides, presented anti-proliferative activity with all cell lines and results suggest a bioactive molecule synergy within the fraction. At a protein concentration of 44 µg/mL, the 50 kDa fraction induced a mortality of 90% for PC3, 89% for A549, 85% for HCT15 and of 81% for BT549 cell lines. At the low protein concentration of only 11 µg/mL the 50 kDa fraction still entails a cell mortality of 76% for A549 and 87% for PC3 cell lines. The 50 kDa fraction contains 56% of proteins, 3% of lipids and 6% of minerals on a dry weight basis and the lowest levels detected of taurine and methionine and highest levels of threonine, proline and glycine amino acids. The enzymatic hydrolysis process suggests that Mytilus edulis by-products should be viewed as high-valued products with strong potential as anti-proliferative agent and promising active ingredients in functional foods.

Highlights

  • Marine organisms are constantly exposed to a hard, competitive and aggressive environment

  • Enzymatic hydrolysis was performed with Protamex, a commercial Bacillus protease complex with broad specificity to hydrophobic amino acids [20,21], known to be food-grade [22] and produce non-bitter hydrolysates [17]

  • This work is a part of a global project which includes the study of anti-proliferative activity in different biomasses exploited in Quebec

Read more

Summary

Introduction

Marine organisms are constantly exposed to a hard, competitive and aggressive environment. They have developed various protective and defense mechanisms such as, the production of bioactive molecules [1]. As a protection against water pathogens, marine organisms rely on their innate immune system [3,4,5,6]. Sessile organisms, such as Mollusca, are exposed to predation and pathogens, and are more likely to produce bioactive secondary metabolites to protect themselves [5,7,8]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.