Abstract

Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS2, a newly synthesized superconductor, not only presents the highest superconducting transition temperature (Tc = 8.8 K) among the intrinsic transition metal dichalcogenides but also is predicted to be a promising candidate as a topological superconductor. Using scanning tunnelling microscopy, we observe a U-shaped superconducting gap in 2M-WS2. Probable Majorana bound states are observed in magnetic vortices, which manifest as a non-split zero-energy state coexisting with the ordinary Caroli–de Gennes–Matricon bound states. Such non-split bound states in 2M-WS2 show highly spatial anisotropy, originating from the anisotropy of the superconducting order parameter and Fermi velocity. Due to its simple layered structure and substitution-free lattice, 2M-WS2 can be a building block to construct novel heterostructures and provides an ideal platform for the study of Majorana bound states. Potential Majorana bound states are seen in the vortex cores of a transition metal dichalcogenide. The properties of the superconductor mean that the bound states are highly anisotropic, and can appear at higher temperatures than other materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.