Abstract

Tectonic landforms reveal that the West Antarctic Ice Sheet (WAIS) lies atop a major volcanic rift system. However, identifying subglacial volcanism is challenging. Here we show geochemical evidence of a volcanic heat source upstream of the fast-melting Pine Island Ice Shelf, documented by seawater helium isotope ratios at the front of the Ice Shelf cavity. The localization of mantle helium to glacial meltwater reveals that volcanic heat induces melt beneath the grounded glacier and feeds the subglacial hydrological network crossing the grounding line. The observed transport of mantle helium out of the Ice Shelf cavity indicates that volcanic heat is supplied to the grounded glacier at a rate of ~ 2500 ± 1700 MW, which is ca. half as large as the active Grimsvötn volcano on Iceland. Our finding of a substantial volcanic heat source beneath a major WAIS glacier highlights the need to understand subglacial volcanism, its hydrologic interaction with the marine margins, and its potential role in the future stability of the WAIS.

Highlights

  • Tectonic landforms reveal that the West Antarctic Ice Sheet (WAIS) lies atop a major volcanic rift system

  • Circumpolar Deep Water (CDW) is the primary heat source for melting glacial ice and its increased presence on the Amundsen Sea continental shelf has been implicated in the rapid melting and grounding line retreat observed beneath the Pine Island Glacier[19,20,21] and in the atmospheric warming along the western Antarctic Peninsula[22]

  • The observation of this unique helium isotope signature, together with what is known of the bed forms and fluvial morphology of the Glacier suggests that this volcanic heat source lies within the Hudson Mountain range, and is driving a subglacial melt that subsequently crosses the ice shelf grounding line

Read more

Summary

Introduction

Tectonic landforms reveal that the West Antarctic Ice Sheet (WAIS) lies atop a major volcanic rift system. Determining the distribution of geothermal heat flow to the WAIS is complicated by the presence of an extensional volcanic rift system that stretches across Marie Byrd Land from the Pine Island Glacier to the Ross Ice Shelf and into the Ross Sea[7,8]. This is known as the West Antarctic Rift System (WARS). The ocean–atmosphere mechanisms that draw more CDW onto Antarctic continental shelves are challenging to characterize and remain poorly understood[23], the concentration and distribution of CDW and its year-to-year variations have revealed connections to climatic changes in the regional winds[21,24]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call