Abstract
Subclass B1 beta-lactamases are Zn(II)-dependent hydrolases that confer bacterial resistance to most clinically useful beta-lactam antibiotics. The enzyme BcII from Bacillus cereus is a prototypical enzyme that belongs to this group, the first Zn(II)-dependent beta-lactamase to be discovered. Crucial aspects of the BcII catalytic mechanism and metal binding mode have been assessed mostly on the Co(II)-substituted surrogate. Here we report a high-resolution structure of Co(II)-BcII, revealing a metal coordination geometry identical to that of the native zinc enzyme. In addition, a high-resolution structure of the apoenzyme, together with structures with different degrees of metal occupancy and oxidation levels of a conserved Cys ligand, discloses a considerable mobility of two loops containing four metal ligands (namely, regions His116-Arg121 and Gly219-Cys221). This flexibility is expected to assist in the structural rearrangement of the metal sites during catalytic turnover, which, along with the coordination geometry adaptability of Zn(II) ions, grants the interaction with a variety of substrates, a characteristic feature of B1 metallo-beta-lactamases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.