Abstract

The transmembrane domains of receptor tyrosine kinases are single-span helical structures suggested to participate directly in the formation of side-to-side receptor homodimers/homooligomers that modulate signal transduction. Transmembrane peptides from the class I receptor tyrosine kinase, ErbB-2, were examined directly by 2H NMR spectroscopy as a means of following such phenomena under the dynamic conditions that characterize fluid, fully hydrated bilayers of natural phospholipids. Appropriate peptides were expressed as 50-mers, containing the transmembrane domain of ErbB-2 plus contiguous stretches of amino acids from the cytoplasmic and extracellular domains. Deuterium probes were incorporated in place of 1H at a site within the helical intramembranous portion (the -CH3 side chain of Ala657), and the peptides were assembled into bilayers of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) for study. An analogous peptide corresponding to the oncogenic variant characterized by a Val659-->Glu point mutation was also examined. At high peptide concentration, prominent spectral features could be assigned to rapidly rotating transmembrane monomers and to large oligomers rotating very slowly relative to a time scale of 10(-5) s. As peptide concentration was lowered, the latter feature was greatly reduced, and an additional population of mobile species became identifiable, consistent with the presence of homodimers and/or small oligomers. The defined nature of these latter spectral features suggests that preferred interaction sites exist on the peptides. The appearance of similar phenomena in the case of transmembrane peptides from both wild-type ErbB-2 and the transforming mutant argues for the involvement of additional factors in signal modulation, such as limitations normally imposed by the missing extramembranous portions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call