Abstract
When grown on glucose in K+-limited chemostat culture, or in batch culture with or without 2,4-dinitrophenol, several strains of Escherichia coli (including the type strain) were found to synthesize a quinoprotein glucose dehydrogenase apoenzyme. The pyridine nucleotides, NAD+ and NADP+, would not serve as cofactor, but activity could be demonstrated upon addition of 2,7,9-tricarboxy-1 H-pyrrolo(2,3-f)quinoline-4,5-dione (PQQ). Thus, in the presence of PQQ, but not in its absence, glucose was oxidized to gluconic acid. A mutant of E. coli PC 1000 was isolated that lacked Enzyme I of the phosphoenolpyruvate phosphotransferase system (PTS) but still synthesized the glucose dehydrogenase apoenzyme. Whereas this mutant would not grow on glucose in the absence of PQQ, it would do so in the presence of low concentrations (1 μM) of this cofactor. On the basis of these observations, it is concluded that the protein (apoenzyme) formed is a genuine glucose dehydrogenase, but that it is not functional in growing cells due to their inability to synthesize the appropriate cofactor (PQQ), at least under these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.