Abstract

In a superconductor, absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong nonequilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor, and resonant frequency of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a nonthermal quasiparticle distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.