Abstract

Thermal manifestations are commonly found in central Mexico as result of the volcanic activity originating from the formation of the Trans-Mexican Volcanic Belt during the Quaternary. The Rancho Nuevo hot spring is one of them that has not been described before with a discharge temperature near 92 °C. The goal of the present study is to provide geothermal characteristics of thermal manifestations at Rancho Nuevo location based on geochemical and mineralogical results to explain deep-subsurface processes that occurred in the geothermal system. The presence of kaolinite, montmorillonite, opal, zeolite, barite, pyrite, and stibnite in altered soil sediments or around the hot springs identified by the techniques used in the present study, confirms the presence of hydrothermal activity. In addition, based on the X-ray diffraction, calcite precipitates at the surface of the thermal springs. This mineral association reflects deep geothermal processes and is eventually deposited in shallow zones. Fluid mixing processes and variations in redox conditions are suggested by mineral association and isotopic sulfur data. Finally, based on the physicochemical data provided by the water samples and the discharge conditions of the springs, stability diagrams were constructed for pyrite, barite, and zeolites using the Geochemist’s Work Bench program to corroborate these data with the mineralogical results. The mineralogical results and distribution, as well as the N-S trend of mineral associations suggest interaction processes between geothermal fluid and rocks of the stratigraphic sequence, and active major faults, enabling the upward flow of deep geothermal fluids. The approach to the conceptual model of the Rancho Nuevo geothermal prospect reveals an attractive potential for the exploration of a viable geothermal resource in central Mexico.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call