Abstract
West Nile virus (WNV) is a flavivirus that is maintained in a bird-mosquito transmission cycle. Humans, horses and other non-avian vertebrates are usually incidental hosts. However, WNV is a neurotropic virus, which requires an efficient humoral response for the control of a neuroinvasive infection. The WNV genome encodes three structural (capsid, premembrane/membrane and envelope) and seven non-structural proteins. Bioinformatic analysis performed on the WNV genomes detected a conserved alternative open reading frame restricted to the lineage I virus. To quickly verify the existence of this putative protein, entitled West Nile Alternative Reading Frame 4 (WARF4), we produced a prokaryotic recombinant source of WARF4 and verified its immunogenicity in vivo by analyzing 43 horse serum samples, of which 15 were positive for antibodies to WNV premembrane and envelope (prM-E) proteins. Specific antibodies to WARF4 were significantly detected in 5 out of the 15 serum samples testing positive for antibodies to prM-E WNV proteins. Our findings provide evidence of a significant antibody response to the WARF4 protein in the serum of the horse testing positive for antibodies to prM-E proteins, thus indicating that this antigen might be a potential tool for further characterization of the immune response of WNV infections in humans as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.