Abstract

AbstractSalination of freshwater (FW) bodies has the potential to affect homeostatic regulation of osmotic and volume balance in FW organisms. The renin-angiotensin system (RAS) plays an important role in volume balance by maintaining blood pressure in marine and seawater acclimated euryhaline fish, but little is known about the RAS in FW adapted fish. The purpose of the present study was to first determine if the FW channel catfish (Ictalurus punctatus), demonstrates evidence of a functional RAS. Channel catfish (n = 6) were implanted with a catheter in the dorsal aorta to measure dorsal aortic pressure (PDA) and infuse drugs. Infusion of [Asn1,Val5,Asn9]-angiotensin I (ANGI) at 100, 400, and 1000 ng/kg significantly increased PDA in a dose dependent manner (P < 0.05). Pretreatment with 2 mg/kg of the angiotensin converting enzyme inhibitor, Captopril (CAP), essentially eliminated the pressor response to the highest dose of ANGI (P < 0.05). Finally, infusion of 400 ng/kg [Asn1,Val5]-angiotensin II (ANGII) significantly increased PDA from baseline (P < 0.05). The results suggest that channel catfish appear to have an operational RAS and may serve as a suitable model in which to study the role of ANGII in blood pressure regulation in FW adapted fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call