Abstract

In recent years the ordering of spins in two-dimensions has received considerable attention due to both the fundamental physics interest and for the possible technological applications. Langmuir–Blodgett (LB) films with magnetic ions are ideal systems to study two-dimensional (2D) magnetic ordering as the distances of the magnetic-ions along the out-of-plane and in-plane directions differ by almost an order of magnitude and the effect of the substrate can be neglected. In particular, vortex formation in ferro and antiferro 2D magnetic structures are of current interest and LB films are ideal to study this evolving physics. We show here that 2D magnetic ordering along the in-plane direction of multilayered LB films changes from ferromagnetic to anti-ferromagnetic as the rare-earth magnetic ion is changed from Gadolinium (Gd) to Holmium (Ho). The in-plane magnetization results have shown that Gd based LB films exhibit a temperature dependent saturation moment due to the existence of a vortex structure. The results of the magnetization study presented here show that the Ho based LB films exhibit an in-plane anti-ferromagnetic ordering and the saturation moment is found to be almost independent of temperature indicating the absence of spin vortex structures. From a 1/χ − T plot the asymtotic Curie point θa and the Neel temperature θN of the Ho-St LB film were found to be 66 K and 42 K respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.