Abstract

The timescale of the modification stage of basin-sized impact structures is not well understood. Owing to ca. 10 km of erosion since its formation, the Vredefort impact structure, South Africa, is an ideal testing ground for deciphering post-impact modification. Here, we present geophysical and geochemical evidence from the Vredefort Granophyre Dikes, which were derived from the - now eroded - Vredefort impact melt sheet. The dikes have been studied mostly in terms of their composition, while the timing and duration of their emplacement remain controversial. We examined the modern depth extent of five dikes, with three from the inner crystalline core of the central uplift, and two from the boundary between the core and the supracrustal collar of the central uplift, using two-dimensional electrical resistivity tomography. We found that the core dikes terminate near the present erosion surface (i.e., <5 m depth). In contrast, the dikes at the core-collar boundary extend to a depth ≥ 9 m. These observations suggest that the core dikes are exposed near their lowermost terminus. In addition, we obtained bulk geochemical composition of the dikes, finding that the andesitic composition phase is present in the core-collar dikes that is not found in the core dikes. The presence of this phase indicates the episodic emplacement of impact melt into subvertical crater floor fractures.We conclude that the dike formation was protracted and occurred over a time span of at least 104 years. The sequential formation of the Vredefort Granophyre Dikes points to horizontal extension of crust below the impact melt sheet above a kinematic velocity discontinuity, a crustal instability resulting from the dynamic collapse of the transient cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call