Abstract

A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawflies, woodwasps, horntails). Most apocritan species possess three different photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied the Symphyta Sirex noctilio, which belongs to the superfamily Siricoidea, a closely related group of the Apocrita suborder. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identified three opsins in the genome, homologous to the hymenopteran green or long-wavelength sensitive (LW) LW1, LW2 and ultra-violet sensitive (UV) opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a blue or short-wavelength sensitive (SW) homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV-green dichromate.

Highlights

  • A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye

  • These recordings were used to determine the λmax of the ultra-violet sensitive (UV) photoreceptors with minimal contribution of the long-wavelength sensitive (LW) receptors

  • Our ERG bioassays and Reverse transcription polymerase chain reactions (RT-PCR) analyses showed two photoreceptors and two visual opsins expressed in the compound eyes of S. noctilio

Read more

Summary

Introduction

A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. There are three major groups of visual opsin genes in insects, named for the region of the spectrum they absorb; the ultraviolet (UV), blue or short wavelength (SW) and green or long wavelength (LW) sensitive o­ psins[9,16,19,20]. The basis of colour vision appears to differ between Apocrita (ants, bees, wasps) and Symphyta (sawflies, woodwasps, horntails). All Apocrita investigated to date, except for the Ichneumonidae, possess one copy of the LW1, SW and UV visual opsin gene expressed in the green, blue and UV-sensitive photoreceptors, ­respectively[16,23,24].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call