Abstract

AbstractLagged oceanic and atmospheric climate indices are potentially useful predictors of seasonal rainfall totals. A rigorous Bayesian joint probability modeling approach is applied to find the cross-validation predictive densities of gridded Australian seasonal rainfall totals using lagged climate indices as predictors over the period of 1950–2009. The evidence supporting the use of each climate index as a predictor of seasonal rainfall is quantified by the pseudo-Bayes factor based on cross-validation predictive densities. The evidence strongly supports the use of climate indices from the Pacific region with weaker, but positive, evidence for the use of climate indices from the Indian region and the extratropical region. The spatial structure and seasonal variation of the evidence for each climate index is mapped and compared. Spatially, the strongest supporting evidence is found for forecasting in northern and eastern Australia. Seasonally, the strongest evidence is found from August–October to November–January and the weakest evidence is found from March–May to May–July. In some regions and seasons, there is little evidence supporting the use of climate indices for forecasting seasonal rainfall. Climate indices derived from sea surface temperature anomalies in the Pacific region show stronger persistence in the relationship with Australian seasonal rainfall totals than climate indices derived from sea surface temperature anomalies in the Indian region. Climate indices derived from atmospheric variables are also strongly supported, provided they represent the large-scale circulation. Many climate indices are found to show similar supporting evidence for forecasting Australian seasonal rainfall, leading to the prospect of combining climate indices in multiple predictor models and/or model averaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call