Abstract

L-929 cell surface membranes have been assayed in vitro and found to contain significant protein kinase activity. A steady-state kinetic analysis indicated that at least two distinct protein kinases were present. Plots of reaction velocity ( v) against substrate (ATP) concentration were distinctly biphasic, as were Lineweaver-Burk plots of 1 v versus 1 ATP . Michaelis constants of the two enzymes were calculated to be 22 and 173 μ m, respectively. Sodium dodecyl sulfate polyacrylamide gel analysis of the phosphorylated membrane proteins provided additional support for the existence of more than one protein kinase. Different endogenous proteins were phosphorylated at 1 μ m ATP compared to 1 μ m ATP. Further studies of the low K m (22 μ m) enzyme suggested that it is a typical cyclic 3′,5′-AMP-independent protein kinase. Its activity was dependent on the presence of Mg 2+, but it was not affected by cyclic 3′,5′-AMP, cyclic 3′,5′-GMP, or the heat-stable inhibitor of cyclic 3′,5′-AMP-dependent protein kinases. ATP and GTP, but not other nucleoside triphosphates, could serve as phosphoryl donor and maximum kinase activity was expressed at pH 7.0. Phosvitin and casein were superior to histones as exogenous substrates for the low K m enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.