Abstract

In the current study we tested the hypothesis that human plasma beta-endorphin (beta E) is derived from at least two subpopulations of beta E-releasing cells: one sensitive to glucocorticoids as well as to dopamine (DA; regulated analogously to the corticotrophs of the rat pituitary), and one insensitive to glucocorticoids but sensitive to DA (regulated analogously to the melanotrophs of the rat pituitary). To test this hypothesis, human plasma levels of ACTH, cortisol, and beta E-like immunoreactivity were measured at baseline and after haloperidol treatment (0.05 mg/kg, i.v.) in two experimental groups, one pretreated with dexamethasone (1.5 mg) and one pretreated with placebo. Plasma PRL levels were also measured in both groups as an indicator of DA receptor blockade. Dexamethasone partially suppressed both baseline and haloperidol-stimulated levels of human plasma beta E-like immunoreactivity, whereas it completely suppressed both basal and haloperidol-stimulated levels of ACTH and cortisol and had no statistically significant effect on either basal or haloperidol-stimulated PRL levels. These data support a negative feedback effect of glucocorticoids on one DA-sensitive cell population that releases both ACTH and beta E (corticotroph like), but not on a second cell population that releases beta E but not ACTH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.