Abstract
We have studied the cell cycle-regulated expression of the thymidine kinase (TK) gene in mammalian tissue culture cells. TK mRNA and enzyme levels are low in resting, G0-phase cells, but increase dramatically (10- to 20-fold) during the S phase in both serum-stimulated and simian virus 40-infected cells. To determine whether an increase in the rate of TK gene transcription is responsible for this induction, nuclear run-on transcription assays were performed at various times after serum stimulation or simian virus 40 infection of growth-arrested simian CV1 cells. When assays were performed at 12-h intervals, a small (two- to threefold) but reproducible increase in TK transcription was detected during the S phase. When time points were chosen to span the G1-S interface a larger (six- to sevenfold) increase in transcriptional activity was observed in serum-stimulated cells but not in simian virus 40-infected cells. The large increase in TK mRNA levels and the relatively small increase in transcription rates in growth-stimulated cells suggest that TK gene expression is controlled at both a transcriptional and post-transcriptional level during the mammalian cell cycle. To identify the DNA sequences required for cell cycle-regulated expression, several TK cDNA clones were transfected into Rat-3 TK- cells, and their expression was examined in resting and serum-stimulated cultures. These experiments indicated that the body of the TK cDNA is sufficient to insure cell cycle-regulated expression regardless of the promoter or polyadenylation signal used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.