Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the reversible oxidative phosphorylation of d-glyceraldehyde 3-phosphate (GAP) into d-glycerate 1,3-bisphosphate (1,3-diPG) in the presence of NAD(+) and inorganic phosphate (P(i)). Within the active site, two anion-binding sites were ascribed to the binding of the C3 phosphate of GAP (P(s)) and to the binding of the attacking phosphate ion (P(i)). The role played by these two sites in the catalytic mechanism in connection with the functional role of coenzyme exchange (NADH-NAD(+) shuttle) has been investigated by several studies leading to the C3 phosphate flipping model proposed by Skarzynski et al. [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. This model has not yet received direct confirmation. To gain further insight into the role of both sites, we synthesized irreversible inhibitors which form with the essential cysteine residue a thioacyl enzyme analogue of the catalytic intermediate. Here we report the refined glycosomal Trypanosoma cruzi GAPDH in complex with a covalently bound GAP analogue at an improved resolution of 2.0-2.5 A. For this holo-thioacyl enzyme complex, a flip-flop movement is clearly characterized, the change from the P(i) to the P(s) binding site being correlated with the coenzyme exchange step: the weaker interaction of the intermediate when bound at the P(s) site with the cofactor allows its release and also the binding of the inorganic phosphate for the next catalytic step. This result gives strong experimental support for the generally accepted flip-flop model of the catalytic mechanism in GAPDH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.