Abstract

The aim of the present study was to test the possibility that the catecholaminergic projectional pathway from the vagus nerve to the medullary visceral zone (MVZ) thence to the paraventricular nucleus of hypothalamus (PVN) was involved in the cytokine-to-brain communication. A triple labeling method in which WGA-HRP retrograde tracing was combined with anti-Fos and -TH immunohistochemical staining was used. WGA-HRP was stereotaxically injected into unilateral PVN in the rat, after a survival of 48 h, animals received intraperitoneal injection of lipopolysaccharide (LPS). The distribution of the HRP retrogradely labeled neurons, Fos protein positive and catecholaminergic neurons (tyrosine hydroxylase as marker) in the MVZ was observed. Subdiaphragmatic vagotomy (SDV) and sham surgery were also used to observe the different Fos expression in the MVZ after intraperitoneal administration of lipopolysaccharide (LPS) or pyrogen-free saline (NS). Under light microscope, seven types of positively stained neurons could be distinguished within the MVZ, namely neurons single-labeled with Fos, HRP or TH, respectively; neurons double-labeled with Fos/TH, Fos/HRP or HRP/TH separately; and neurons triple-labeled with Fos, HRP and TH staining. Intraperitoneal LPS caused lots of robust Fos expression within the MVZ in the sham surgery groups and this response in the MVZ was markedly inhibited in the vagotomized rats. The results suggested that some catecholaminergic neurons in the MVZ could send projections to the PVN and this pathway might be involved in the relay of peripheral immune information via vagus nerve. MVZ was a neural relay station in the immune-to-brain communication and might play a significant role in the neuroimmunomodulation via vagus-MVZ-PVN pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call