Abstract

In an earlier study, we found that rice (Oryza sativa) grown in nutrient solution well-supplied with Zn preferentially took up light (64)Zn over (66)Zn, probably as a result of kinetic fractionation in membrane transport processes. Here, we measure isotope fractionation by rice in a submerged Zn-deficient soil with and without Zn fertilizer. We grew the same genotype as in the nutrient solution study plus low-Zn tolerant and intolerant lines from a recombinant inbred population. In contrast to the nutrient solution, in soil with Zn fertilizer we found little or heavy isotopic enrichment in the plants relative to plant-available Zn in the soil, and in soil without Zn fertilizer we found consistently heavy enrichment, particularly in the low-Zn tolerant line. These observations are only explicable by complexation of Zn by a complexing agent released from the roots and uptake of the complexed Zn by specific root transporters. We show with a mathematical model that, for realistic rates of secretion of the phytosiderophore deoxymugineic acid (DMA) by rice, and realistic parameters for the Zn-solubilizing effect of DMA in soil, solubilization and uptake by this mechanism is necessary and sufficient to account for the measured Zn uptake and the differences between genotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call