Abstract

Extracellular ATP mediates fast excitatory neurotransmission in many regions of the central nervous system through activation of P2X receptors. Although several P2X receptor subunits have been identified in the mammalian retina, little is known about the functional role of these receptors in retinal signalling. The purpose of the present study was to investigate whether purinergic P2X(7) receptors are involved in outer retinal processing by assessing receptor localization, degradation of extracellular ATP and the effect of functional activation of P2X(7) receptors on the electroretinogram (ERG). Using light and electron microscopy, we demonstrated that P2X(7) receptors are expressed postsynaptically on horizontal cell processes as well as presynaptically on photoreceptor synaptic terminals in both the rat and marmoset retina. Using an enzyme cytochemical method, we showed that ecto-ATPases are active in the outer plexiform layer of the rat retina, providing a mechanism by which purinergic synaptic transmission can be rapidly terminated. Finally, we evaluated the role of P2X(7) receptors in retinal function by assessing changes to the ERG response of rats after intravitreal delivery of the P2X(7) receptor agonist benzoyl benzoyl ATP (BzATP). Intravitreal injection of BzATP resulted in a sustained increase (up to 58%) in the amplitude of the photoreceptor-derived a-wave of the ERG. In contrast, BzATP caused a transient reduction in the rod- and cone-derived postreceptoral responses. These results provide three lines of evidence for the involvement of extracellular purines in outer retinal processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call