Abstract

Bacteriocins synthesis is initiated from an inactive precursor, which is composed of an N-terminal leader peptide attached to a C-terminal pro-peptide. However, leaderless bacteriocins (LLB) do not possess this N-terminal leader peptide nor undergo post-translational modifications. These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. However, although considered to be simple, the biosynthetic pathway of LLB remains to be fully understood. Enterocin DD14 (EntDD14) is a two-peptide LLB produced by Enterococcus faecalis 14, which is a strain isolated from meconium. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains. These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. To elucidate their role within the EntDD14 genetic determinants, we constructed deletion mutants of the ddE and ddF genes. As a result, the mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter. Importantly, in these mutant strains (ΔddE and ΔddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Taken together, these results clearly indicate that PH domain-containing proteins, such as DdE and DdF, are involved in the transport of the leaderless two-peptide EntDD14.

Highlights

  • UMR Transfrontalière BioEcoAgro 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; UR Risques Microbiens, Normandie University, UNICAEN, U2RM, 14000 Caen, France; Academic Editor: Andreas Burkovski

  • Introduction with regard to jurisdictional claims in Bacteriocins are produced by a wide range of Gram-negative bacteria (GNB), Grampositive bacteria (GPB), and Archaea [1,2,3], permitting them to compete with congeners and thrive in their ecological niches

  • The Enterocin DD14 (EntDD14) cluster is composed of 10 genes: ddABCDEFGHIJ

Read more

Summary

Introduction

UMR Transfrontalière BioEcoAgro 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; UR Risques Microbiens, Normandie University, UNICAEN, U2RM, 14000 Caen, France; Academic Editor: Andreas Burkovski. Do not possess this N-terminal leader peptide nor undergo post-translational modifications These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. The mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter In these mutant strains (∆ddE and ∆ddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Bacteriocins produced by GNB (named microcins), and those produced by GPB have been intensively studied and have shown similarities in their biosynthetic pathways and differences in their modes of action [4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call